Latihan Soal SBMPTN Bab: Eksponen Dan Bentuk Akar Lengkap Dengan Pembahasan

Oleh

admin

Soal UTBK Eksponen Dan Bentuk Akar SMA/SMK

01


Jika $sqrt[3]{4^{x+1}}=2sqrt{8^{x}}$, maka $x=…$

A. $-frac{2}{5}$
B. $-frac{1}{5}$
C. $frac{1}{5}$
D. $frac{2}{5}$
D. $1$
Pembahasan:

Show

begin{aligned}
sqrt[3]{4^{x+1}} &= 2sqrt{8^{x}} \
sqrt[3]{2^{x+1}} &= 2sqrt{2^{3x}} \
2^{frac{2x+2}{3}}&= 2(2^{frac{3}{2}x}) \
2^{frac{2x+2}{3}}&= 2^{1+frac{3}{2}x} \
frac{2x+2}{3} &= 1+frac{3}{2}x \
4x+4 &= 6+9x \
5x &= -1\
x&=-frac{1}{5}
end{aligned}

JAWAB : B

02


Jika $4^{x}-4^{x-1}=6$, maka $(2x)^{x}$ sama dengan

A. $3$
B. $3sqrt{3}$
C. $9$
D. $9sqrt{3}$
D. $27$
Pembahasan:

Show

begin{aligned}
4^{x}-4^{x-1} &= 6 &rightarrow 4^{x}-frac{4^{x}}{4}&=6 \
3times 4^{x} &= 24 &rightarrow 4^{x}&=8 \
2^{2x}&= 2^{3} &rightarrow x&=frac{3}{2} \
end{aligned}
jadi, $(2x)^{x} = (3)^{frac{3}{2}}=3times 3^{frac{1}{2}}=3sqrt{3}$

JAWAB : B

03


Nilai $x$ yang memenuhi persamaan $sqrt[3]{4^{5-x}}=frac{1}{2^{2x-1}}$ adalah…

A. $-4$
B. $-1$
C. $-frac{1}{2}$
D. $frac{1}{4}$
D. $2$
Pembahasan:

Show

begin{aligned}
frac{sqrt[3]{4^{5-x}}}{8} &= frac{1}{2x+1}Leftrightarrow frac{2^{frac{10-2x}{3}}}{2^{3}} = 2^{-2x-1} \
2^{frac{10-2x}{3}-3} &= 2^{-2x-1} \
frac{10-2x}{3} – 3&= -2x-1 \
10-2x-9 &=-6-3 \
4x &= -4Leftrightarrow x=-1
end{aligned}

JAWAB : B

04


Jika $frac{frac{1}{2}-frac{1}{sqrt{5}}}{frac{1}{2}+frac{1}{sqrt{5}}} = a+bsqrt{5}$

Maka $a+b$

A. $-4$
B. $5$
C. $-frac{1}{2}$
D. $frac{1}{4}$
D. $2$
Pembahasan:

Show

$a+bsqrt{5}=frac{frac{1}{2}-frac{1}{5}}{frac{1}{2}+frac{1}{sqrt{5}}}=frac{frac{sqrt{5}-2}{2sqrt{5}}}{frac{sqrt{5}+2}{2sqrt{5}}}=frac{sqrt{5}-2}{5-4}$

Rasionalkan penyebutnya

begin{flalign}
a+bsqrt{5}&= frac{sqrt{5}-2}{sqrt{5}-2}times frac{sqrt{5}-2}{sqrt{5}-2}=frac{9-4sqrt{5}}{5-4} &\
a+bsqrt{5}&= 9-4sqrt{5} &\
end{flalign}

begin{flalign}
text {Jadi nilai a = 9 dan b = -4,} &\
text {Sehingga a+b = 9+(-4) = 5} &\
end{flalign}

JAWAB : B

05


Bentuk akar $frac{(a^{frac{5}{3}}b^{frac{1}{2}}-a^{frac{2}{2}}b^{frac{3}{2}})}{(a^{frac{7}{2}}b^{frac{1}{2}}-a^{frac{3}{2}}b)}$

Maka $a+b$

A. $sqrt{a}-sqrt{b}$
B. $sqrt{a}+sqrt{b}$
C. $frac{sqrt{a}+sqrt{b}}{sqrt{a}-sqrt{b}}$
D. $frac{sqrt{a}-sqrt{b}}{a-b}$
E. $frac{sqrt{a}+sqrt{b}}{a+b}$
Pembahasan:

Show

begin{aligned}
frac{(a^{frac{5}{3}}b^{frac{1}{2}}-a^{frac{2}{2}}b^{frac{3}{2}})}{(a^{frac{7}{2}}b^{frac{1}{2}}-a^{frac{3}{2}}b)}= frac{b^{frac{1}{2}}a^{frac{2}{3}}\(a-b)}{ a^{frac{2}{3}}b^{frac{1}{2}}\(sqrt{a}+sqrt{b})} \
= frac{(sqrt{a}+sqrt{b})(sqrt{a}-sqrt{b})}{ (sqrt{a}-sqrt{b})} = sqrt{a}+sqrt{b}
end{aligned}

JAWAB : B

06


Jika $r = frac{20sqrt{2} – 25}{(10+20sqrt{2})(2-sqrt{2})}$, maka $(4r-2)^2 = ….$

A. $5$
B. $4$
C. $3$
D. $2$
E. $1$
Pembahasan:

Show

begin{flalign}
r & = frac{20sqrt{2} – 25}{(10+20sqrt{2})(2-sqrt{2})} \
& = frac{5(4sqrt{2} – 5)}{10(1+2sqrt{2})(2-sqrt{2})} , , , , , , , text{(bagi 5)} &\
& = frac{(4sqrt{2} – 5)}{2(1+2sqrt{2})(2-sqrt{2})} , , , , , , , text{(kalikan penyebutnya)} &\
& = frac{(4sqrt{2} – 5)}{2(3sqrt{2} – 2)} , , , , , , , text{(kalikan sekawan)} &\
& = frac{(4sqrt{2} – 5)}{2(3sqrt{2} – 2)} . frac{3sqrt{2} + 2}{3sqrt{2} + 2} &\
& = frac{14 – 7sqrt{2}}{2(9.2- 4 )} = frac{7(2 – sqrt{2})}{2.14} = frac{(2 – sqrt{2})}{4}
end{flalign}

Menentukan nilai $(4r-2)^2$

begin{flalign}
(4r-2)^2 & = left( 4.frac{(2 – sqrt{2})}{4} – 2 right)^2 &\
& = left( (2 – sqrt{2}) – 2 right)^2 &\
& = left( – sqrt{2} right)^2 &\
& = 2
end{flalign}

JAWAB : D

07


Bentuk sederhana dari $dfrac{left(sqrt{3}+sqrt{7} right)left( sqrt{3}-sqrt{7} right)}{2sqrt{5}-4sqrt{2}}$ adalah…

A. $frac{2}{3} left(sqrt{5}+2sqrt{2} right)$
B. $frac{2}{3} left(2sqrt{2}-sqrt{5} right)$
C. $-frac{2}{3} left( 2sqrt{5}+ 4sqrt{2} right)$
D. $-frac{4}{9} left( 2sqrt{5}+ 4sqrt{2} right)$
E. $-frac{4}{9} left( 2sqrt{5}-sqrt{2} right)$
Pembahasan:

Show

begin{flalign}
& dfrac{left(sqrt{3}+sqrt{7} right)left( sqrt{3}-sqrt{7} right)}{2sqrt{5}-4sqrt{2}} &\
& = dfrac{3-7}{2 left( sqrt{5}-2sqrt{2} right) } times dfrac{sqrt{5}+2sqrt{2}}{sqrt{5}+2sqrt{2}} &\
& = dfrac{-4 left( sqrt{5} + 2sqrt{2} right)}{2 left( 5- 8 right) } &\
& = dfrac{-4 left( sqrt{5} + 2sqrt{2} right)}{-6} \

& = dfrac{2}{3} left( sqrt{5} + 2sqrt{2} right) &\
end{flalign}

JAWAB : A

08


$dfrac{5 left( sqrt{3}+sqrt{2} right)left( sqrt{3}-sqrt{2} right)^{3}}{left( 2sqrt{2}-sqrt{3} right)}=cdots$

A. $sqrt{3}-sqrt{2}$
B. $3sqrt{3}-2sqrt{2}$
C. $2sqrt{2}-3sqrt{3}$
D. $3sqrt{2}-2sqrt{3}$
E. $4sqrt{2}-3sqrt{3} $
Pembahasan:

Show

begin{flalign}
& dfrac{5 left( sqrt{3}+sqrt{2} right)left( sqrt{3}-sqrt{2} right)^{3}}{left( 2sqrt{2}-sqrt{3} right)} &\
& = dfrac{5 left( sqrt{3}+sqrt{2} right)left( sqrt{3}-sqrt{2} right)left( sqrt{3}-sqrt{2} right)^{2}}{left( 2sqrt{2}-sqrt{3} right)} &\
& = dfrac{5 left( 3-2 right)left( sqrt{3}-sqrt{2} right)^{2}}{left( 2sqrt{2}-sqrt{3} right)} &\
& = dfrac{5 left( 3+2-2sqrt{6} right)}{left( 2sqrt{2}-sqrt{3} right)} &\
& = dfrac{25-10sqrt{6}}{left( 2sqrt{2}-sqrt{3} right)} times dfrac{left( 2sqrt{2}+sqrt{3} right)}{left( 2sqrt{2}+sqrt{3} right)} &\
& = dfrac{50sqrt{2}+25sqrt{3}-20sqrt{12}-10sqrt{18}}{left( 8-3 right)} &\
& = dfrac{50sqrt{2}+25sqrt{3}-40sqrt{3}-30sqrt{2}}{5} &\
& = dfrac{20sqrt{2}-15sqrt{3}}{5} &\
& = 4sqrt{2}-3sqrt{3}
end{flalign}

JAWAB : E

09


Nilai x yang memenuhi persamaan $3^{2x+3}=sqrt[3]{27^{x+5}}$

A. $-2$
B. $-1$
C. $0$
D. $1$
E. $2$
Pembahasan:

Show

begin{flalign}
3^{2x+3} &=sqrt[3]{27^{x+5}} &\
3^{2x+3} &=27^{dfrac{x+5}{3}} &\
3^{2x+3} &=(3^{3})^{dfrac{x+5}{3}} &\
3^{2x+3} &=3^{x+5} &\
& Rightarrow 2x+3=x+5 &\
& Rightarrow 2x-x=5-3 &\
& Rightarrow x=2
end{flalign}

JAWAB : E

10


Nilai $1-x$ yang memenuhi persamaan $sqrt{8^{3-x}}=4 cdot 2^{1-2x}$

A. $-4$
B. $-3$
C. $-2$
D. $3$
E. $4$
Pembahasan:

Show

begin{flalign}
sqrt{8^{3-x}} &= 4 cdot 2^{1-2x} &\
8^{dfrac{3-x}{2}} &= 2^{2} cdot 2^{1-2x} &\
2^{ dfrac{3(3-x)}{2}} &= 3-2x &\
9-3x &= 6-4x &\
4x-3x &= 6-9 &\
x &= -3 &\
1- x &= 1-(-3) =4
end{flalign}

JAWAB : E

Artikel Terkait

Bagikan: